When We Are History

Steve McCracken has overseen a 13-year, $800 million cleanup and burial of the radioactive waste at Weldon Spring. Now that the odyssey is nearing its end, one thought haunts him -- how to warn people in the future not to dig it up.

It seeps into almost every sentence, invited or not, the evolution from anger to trust. Communication. Communication. The word flies around in his head like something looking to land. When he describes leachate collection systems, he sooner or later describes communicating leachate collection systems. An explanation of radioactive danger becomes a primer in explaining radioactive danger. It almost seems as if little here is measured for McCracken in terms of due dates or completion rates. What counts is how well the outside understands. "Nothing here would work if the public didn't understand and agree with what we're doing," he says.

But now that the project is three years from completion, McCracken is faced with a whole new form of communication that he's never dealt with before. For him, the three-year deadline starts the ticking of a whole new timepiece.

Science and engineering can only design a hazardous-waste storage facility to last about 1,000 years -- longer if it's left undisturbed by man. But even the English language may not last another 1,000 years. How do you communicate to that strange, distant point in time, far beyond the next millennium?

"It's only been recently that more and more of these sites have come close to completion, so people are only beginning to ask, 'Well, what are the real requirements for when you're done with a job like this?'" McCracken says.

"How do you communicate with the public here, when you're not going to be around? How do you communicate to them that this isn't just a big pile of rocks?" he asks, referring to the topmost layer of the toxic tomb. "Everybody who drives by here eventually is going to ask, 'What is that?' There's no telling what people will think of that big pile of rocks before long."

For McCracken, who oversaw a dozen years of the numbing slope calculations, space estimations, maximums, minimums and physical calibrations that went into the cleanup, there is one equation that no logarithm, vector or integral can gauge for him -- the ever-looming measure of forever. And 4.5 billion years -- the time needed for the radioactivity inside the tomb to die -- might as well be forever.

Early Lessons
The son of a DOE engineer and a graduate of the University of Tennessee, McCracken was no novice at cleaning up large amounts of the most dangerous materials known to man. Like many of the 300 engineers, geologists, physicists, safety experts, support staff, construction workers, security personnel, chemists and industrial hygienists working at the site, he came to Weldon Spring having worked on other projects classified by the DOE as "major system acquisitions" -- the biggest type of project the federal agency handles.

Those sites, including Weldon Spring, sit scattered throughout the western United States like events in a chain reaction. During the federal government's pursuit of atomic superiority in the 1940s, '50s and '60s, uranium ore was mined from the ground by private companies and converted to "yellow cake," (a powder of about 90 percent uranium oxide) in places like Rifle, Colo.; Ambrosia Lake, N.M.; and Tuba City, Ark.; and sent to facilities such as the Weldon Spring Uranium Feed Materials Plant.

Meanwhile, the mining activities back West left behind tailings (a slurry of 60 percent liquid containing radioactive particles and chemically hazardous metals), which somewhere along the way got used for such things as backfilling the basements of local homes. It was in places like this, in people's backyards, that McCracken began learning about communication. "That was really hard," he says, "because it's really tough to talk to people who own homes and tell them that they have a problem, that there is a long-term health risk, that their property value just went down to nothing and that we'd be back later to try and fix it. That was really tough.

"You'd go to town meetings where they'd come out in force to tell you their concerns, and you'd be sitting there feeling pretty bad for them, because it's difficult to explain to them what the problems are and to get them to any kind of comfort level, because they probably don't believe you anyway," he adds. "That was tough work."

Nothing, however, prepared McCracken for the sheer volume and spread of the hazardous waste at the Weldon Spring site or for the community's reaction to what eventually became the 226-acre Superfund site named Major Project No. 185, Weldon Spring Site Remedial Action Project (WSSRAP -- pronounced "wiz-rap").

A Toxic Tour
There were three major areas of concern: the 44 buildings, the four waste pits and the quarry.

The main culprit was uranium, a heavy, silver-gray metal with hyperactive atoms that had flung a thin layer of radioactivity onto the site's buildings and everything in and around them. When the uranium ore was processed, anything not extracted in the form of sludge was dumped out back into one of four waste pits that sat within shouting distance from the buildings.

When McCracken first saw them, sitting on 26 acres, they were primitive pits of infected debris, including 275,000 cubic yards of sludge and soil and 57 million gallons of contaminated water. The sludge was made up of things like magnesium fluoride, washed slag and thorium-232 solids -- which, when combined, had the color and texture of butterscotch pudding. Lurking within this radioactive goo, in some places reaching down 19 feet, were large amounts of uranium, thorium and radium.

« Previous Page
Next Page »