When We Are History

Steve McCracken has overseen a 13-year, $800 million cleanup and burial of the radioactive waste at Weldon Spring. Now that the odyssey is nearing its end, one thought haunts him -- how to warn people in the future not to dig it up.

For McCracken, it was a meltdown, a big, broken link in the chain of communication he worked so hard to maintain.

"We can do a pretty good job of communicating in St. Charles County," McCracken says with an attitude of defeat, "but when we get much beyond that, our ability to communicate becomes more difficult. There were a number of people in St. Louis who thought we were doing this wrong, and they were better at communicating in St. Louis than we were. It was very hard for us to convince people in St. Louis that what we were going to do wasn't going to hurt them."

Despite the protests, the DOE pushed ahead with their plan. Many, like Drey, still aren't convinced the process is safe, and that issue still haunts McCracken today. But both he and Drey admit they respect each other's work, going so far as to say they even like each other's company. McCracken has visited Drey's home and keeps a picture of the two of them in his office. But as they both also admit, "We just don't agree on anything."

After the DOE's decision to put the water back in the Missouri River was announced, the quarry water was pumped into the treatment plant, and crews rolled in with excavators, high lifts and grapplers to dig out the contaminated debris. Loaded onto tri-axle, off-road haul trucks that were continually decontaminated with high-power washes, the debris was shipped north to the chemical-plant site, where it was stored next to the growing rows of debris being taken out of the waste pits. Almost 11,000 round trips between the quarry and the chemical-plant site were made, for a total of 88,000 miles traveled.

By the end of 1995, left behind at the quarry site was a 60-foot-deep hole in the ground, with an empty basin floor covering more than 2 acres.

The final major portion of the cleanup that was agreed on -- by the DOE, the state and the citizens' group -- was to take down the 44 buildings back at the chemical-plant site. But workers couldn't just go in and start tearing down the buildings, because in doing so, airborne contamination would likely blow north toward Francis Howell High School.

The worst of the buildings were tightly sealed except for one opening -- every window, every hole, every crack in every wall. Compressors then sucked air from the inside out through the opening, pushed it through filters and released it. Then all asbestos was removed, as well as any product material in piping and tanks that could be found.

Even while describing the physical aspects of the project such as this, McCracken worries about communication -- in this case, between the workers. "One of the biggest problems with demolishing a building like this is not the hazardous material," he says. "It's heat stress and construction accidents. If you have all these people in respirators and stuff, their ability to see or hear or communicate is greatly reduced, and the probability of an accident goes way up."

Once the buildings were cleared out, scoured and dismantled piece-by-piece, a 7,800-pound wrecking ball was brought in to break apart the remaining foundations. The horizon of Weldon Spring changed, and by 1995, 100,000 linear feet of pipe, 30,000 tons of structural steel, 50,000 cubic yards of foundation concrete, 175,000 cubic yards of contaminated soil and 5,800 cubic yards of rubble had been scraped off the landscape forever.

Building the Tomb
Uranium can't be treated in any way that makes it less radioactive. It must decay on its own, and any uranium around when the Earth formed, more than 4 billion years ago, would still be decaying today. Asked how long the material from Weldon Spring would need before it was no longer radioactive, McCracken shrugs: "I don't know for sure. It will be for so long that it's really unimportant. I think it's appropriate to say the stuff will be radioactive essentially forever."

But no engineer alive today can design a storage facility that will last forever. Not even engineers employed by Morrison Knudsen, builders of the Hoover Dam, know of any manmade material that will not at least start crumbling, leaking or evaporating after, say, the year 3000. So when the DOE suggested that the hazardous material at Weldon Spring be stored on-site rather than packed off to some other state that didn't want it either, eyebrows were raised and proof requested.

Proof of what? That the DOE could construct a facility that would probably outlast 15 more popes? Not a problem. Proof that it would contain the waste forever? Not a fair question.

But Marjorie Wesely, the engineering manager at Weldon Spring for MK-Ferguson, came to the project in '91 with a plan. A Stanford graduate with a master's degree in geo-technical engineering, Wesely was trained in the art of building things from dirt. She was born and raised in Wakonda, S.D., and, after a short stint as a chemistry teacher and mining-research technician, went to Stanford, got her degree and immediately started working for Morrison Knudsen. She speaks softly, and, dressed in a blue-flowered sweater and matching pants, projects an image defying the technical nature of her profession. Except for the work boots she wears.

« Previous Page
Next Page »